Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(43): eadg6874, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37878703

RESUMO

Interleukins are secreted proteins that regulate immune responses. Among these, the interleukin 12 (IL-12) family holds a central position in inflammatory and infectious diseases. Each family member consists of an α and a ß subunit that together form a composite cytokine. Within the IL-12 family, IL-35 remains particularly ill-characterized on a molecular level despite its key role in autoimmune diseases and cancer. Here we show that both IL-35 subunits, IL-12α and EBI3, mutually promote their secretion from cells but are not necessarily secreted as a heterodimer. Our data demonstrate that IL-12α and EBI3 are stable proteins in isolation that act as anti-inflammatory molecules. Both reduce secretion of proinflammatory cytokines and induce the development of regulatory T cells. Together, our study reveals IL-12α and EBI3, the subunits of IL-35, to be functionally active anti-inflammatory immune molecules on their own. This extends our understanding of the human cytokine repertoire as a basis for immunotherapeutic approaches.


Assuntos
Interleucina-12 , Interleucinas , Humanos , Citocinas/metabolismo , Interleucina-12/metabolismo , Interleucinas/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Linfócitos T Reguladores
4.
J Allergy Clin Immunol ; 149(6): 2078-2090, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34974067

RESUMO

BACKGROUND: Infectious agents can reprogram or "train" macrophages and their progenitors to respond more readily to subsequent insults. However, whether such an inflammatory memory exists in type 2 inflammatory conditions such as allergic asthma was not known. OBJECTIVE: We sought to decipher macrophage-trained immunity in allergic asthma. METHODS: We used a combination of clinical sampling of house dust mite (HDM)-allergic patients, HDM-induced allergic airway inflammation in mice, and an in vitro training setup to analyze persistent changes in macrophage eicosanoid, cytokine, and chemokine production as well as the underlying metabolic and epigenetic mechanisms. Transcriptional and metabolic profiles of patient-derived and in vitro trained macrophages were assessed by RNA sequencing or metabolic flux analysis and liquid chromatography-tandem mass spectrometry analysis, respectively. RESULTS: We found that macrophages differentiated from bone marrow or blood monocyte progenitors of HDM-allergic mice or asthma patients show inflammatory transcriptional reprogramming and excessive mediator (TNF-α, CCL17, leukotriene, PGE2, IL-6) responses upon stimulation. Macrophages from HDM-allergic mice initially exhibited a type 2 imprint, which shifted toward a classical inflammatory training over time. HDM-induced allergic airway inflammation elicited a metabolically activated macrophage phenotype, producing high amounts of 2-hydroxyglutarate (2-HG). HDM-induced macrophage training in vitro was mediated by a formyl peptide receptor 2-TNF-2-HG-PGE2/PGE2 receptor 2 axis, resulting in an M2-like macrophage phenotype with high CCL17 production. TNF blockade by etanercept or genetic ablation of Tnf in myeloid cells prevented the inflammatory imprinting of bone marrow-derived macrophages from HDM-allergic mice. CONCLUSION: Allergen-triggered inflammation drives a TNF-dependent innate memory, which may perpetuate and exacerbate chronic type 2 airway inflammation and thus represents a target for asthma therapy.


Assuntos
Asma , Hipersensibilidade , Animais , Dermatophagoides pteronyssinus , Modelos Animais de Doenças , Humanos , Inflamação , Macrófagos , Camundongos , Prostaglandinas E/metabolismo , Pyroglyphidae
5.
Semin Immunol ; 53: 101526, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-34802871

RESUMO

Macrophages are innate immune cells with essential roles in host defense, inflammation, immune regulation and repair. During infection with multicellular helminth parasites, macrophages contribute to pathogen trapping and killing as well as to tissue repair and the resolution of type 2 inflammation. Macrophages produce a broad repertoire of effector molecules, including enzymes, cytokines, chemokines and growth factors that govern anti-helminth immunity and repair of parasite-induced tissue damage. Helminth infection and the associated type 2 immune response induces an alternatively activated macrophage (AAM) phenotype that - beyond driving host defense - prevents aberrant Th2 cell activation and type 2 immunopathology. The immune regulatory potential of macrophages is exploited by helminth parasites that induce the production of anti-inflammatory mediators such as interleukin 10 or prostaglandin E2 to evade host immunity. Here, we summarize current insights into the mechanisms of macrophage-mediated host defense and repair during helminth infection and highlight recent progress on the immune regulatory crosstalk between macrophages and helminth parasites. We also point out important remaining questions such as the translation of findings from murine models to human settings of helminth infection as well as long-term consequences of helminth-induced macrophage reprogramming for subsequent host immunity.


Assuntos
Helmintos , Macrófagos , Animais , Quimiocinas , Citocinas , Helmintos/fisiologia , Humanos , Inflamação , Ativação de Macrófagos , Camundongos
6.
Plant Physiol ; 184(4): 1744-1761, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33020252

RESUMO

C13-apocarotenoids (norisoprenoids) are carotenoid-derived oxidation products that perform important physiological functions in plants. Although their biosynthetic pathways have been extensively studied, their metabolism including glycosylation remains poorly understood. Candidate uridine-diphosphate glycosyltransferase genes (UGTs) were selected based on their high transcript abundance in comparison with other UGTs in vegetative tissues of Nicotiana benthamiana and peppermint (Mentha × piperita), as these tissues are rich sources of apocarotenoid glucosides. Hydroxylated C13-apocarotenol substrates were produced by P450-catalyzed biotransformation and microbial/plant enzyme systems were established for the synthesis of glycosides. Natural substrates were identified by physiological aglycone libraries prepared from isolated plant glycosides. In total, we identified six UGTs that catalyze the glucosylation of C13-apocarotenols, where Glc is bound either to the cyclohexene ring or the butane side chain. MpUGT86C10 is a superior novel enzyme that catalyzes the glucosylation of allelopathic 3-hydroxy-α-damascone, 3-oxo-α-ionol, 3-oxo-7,8-dihydro-α-ionol (Blumenol C), and 3-hydroxy-7,8-dihydro-ß-ionol, whereas a germination test demonstrated the higher phytotoxic potential of a norisoprenoid glucoside in comparison to its aglycone. Glycosylation of C13-apocarotenoids has several functions in plants, including increased allelopathic activity of the aglycone, facilitating exudation by roots and allowing symbiosis with arbuscular mycorrhizal fungi. The results enable in-depth analysis of the roles of glycosylated norisoprenoid allelochemicals, the physiological functions of apocarotenoids during arbuscular mycorrhizal colonization, and the associated maintenance of carotenoid homeostasis.


Assuntos
Carotenoides/metabolismo , Glicosiltransferases/metabolismo , Mentha piperita/genética , Mentha piperita/metabolismo , /metabolismo , Difosfato de Uridina/metabolismo , Vias Biossintéticas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Glicosilação , Glicosiltransferases/genética
7.
Front Immunol ; 11: 2106, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013887

RESUMO

The same mechanisms that enable host defense against helminths also drive allergic inflammation. This suggests that pathomechanisms of allergic diseases represent evolutionary old responses against helminth parasites and that studying antihelminth immunity may provide insights into pathomechanisms of asthma. However, helminths have developed an intricate array of immunoregulatory mechanisms to modulate type 2 immune mechanisms. This has led to the hypothesis that the lack of helminth infection may contribute to the rise in allergic sensitization in modern societies. Indeed, the anti-inflammatory potential of helminth (worm) parasites and their products in allergy and asthma has been recognized for decades. As helminth infections bring about multiple undesired effects including an increased susceptibility to other infections, intended helminth infection is not a feasible approach to broadly prevent or treat allergic asthma. Thus, the development of new helminth-based biopharmaceutics may represent a safer approach of harnessing type 2-suppressive effects of helminths. However, progress regarding the mechanisms and molecules that are employed by helminths to modulate allergic inflammation has been relatively recent. The scavenging of alarmins and the modulation of lipid mediator pathways and macrophage function by helminth proteins have been identified as important immunoregulatory mechanisms targeting innate immunity in asthma and allergy. In addition, by regulating the activation of dendritic cells and by promoting regulatory T-cell responses, helminth proteins can counterregulate the adaptive T helper 2 cell response that drives allergic inflammation. Despite these insights, important open questions remain to be addressed before helminth molecules can be used for the prevention and treatment of asthma and other allergic diseases.


Assuntos
Asma/imunologia , Helmintíase/imunologia , Interações Hospedeiro-Parasita/imunologia , Hipersensibilidade/imunologia , Modelos Imunológicos , Imunidade Adaptativa , Alarminas/metabolismo , Animais , Asma/epidemiologia , Asma/terapia , Evolução Biológica , Comorbidade , Células Dendríticas/imunologia , Proteínas de Helminto/administração & dosagem , Proteínas de Helminto/fisiologia , Proteínas de Helminto/uso terapêutico , Helmintíase/epidemiologia , Helmintíase/parasitologia , Helmintos/fisiologia , Humanos , Hipersensibilidade/epidemiologia , Hipersensibilidade/terapia , Imunidade Celular , Imunidade Inata , Imunomodulação , Inflamação , Ativação de Macrófagos , Camundongos , Modelos Animais , Ratos , Subpopulações de Linfócitos T/imunologia , Terapia com Helmintos
8.
Mol Immunol ; 126: 120-128, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32823236

RESUMO

The interleukin 12 (IL-12) family of cytokines regulates T cell functions and is key for the orchestration of immune responses. Each heterodimeric IL-12 family member is a glycoprotein. However, the impact of glycosylation on biogenesis and function of the different family members has remained incompletely defined. Here, we identify glycosylation sites within human IL-12 family subunits that become modified upon secretion. Building on these insights, we show that glycosylation is dispensable for secretion of human IL-12 family cytokines except for IL-35. Furthermore, our data show that glycosylation differentially influences IL-12 family cytokine functionality, with IL-27 being most strongly affected. Taken together, our study provides a comprehensive analysis of how glycosylation affects biogenesis and function of a key human cytokine family and provides the basis for selectively modulating their secretion via targeting glycosylation.


Assuntos
Interleucina-12/metabolismo , Interleucinas/metabolismo , Glicosilação , Células HEK293 , Humanos , Interleucina-12/genética , Interleucina-12/imunologia , Interleucina-23/genética , Interleucina-23/imunologia , Interleucina-23/metabolismo , Interleucinas/genética , Interleucinas/imunologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
9.
Sci Transl Med ; 12(540)2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321863

RESUMO

Eicosanoids are key mediators of type-2 inflammation, e.g., in allergy and asthma. Helminth products have been suggested as remedies against inflammatory diseases, but their effects on eicosanoids are unknown. Here, we show that larval products of the helminth Heligmosomoides polygyrus bakeri (HpbE), known to modulate type-2 responses, trigger a broad anti-inflammatory eicosanoid shift by suppressing the 5-lipoxygenase pathway, but inducing the cyclooxygenase (COX) pathway. In human macrophages and granulocytes, the HpbE-driven induction of the COX pathway resulted in the production of anti-inflammatory mediators [e.g., prostaglandin E2 (PGE2) and IL-10] and suppressed chemotaxis. HpbE also abrogated the chemotaxis of granulocytes from patients suffering from aspirin-exacerbated respiratory disease (AERD), a severe type-2 inflammatory condition. Intranasal treatment with HpbE extract attenuated allergic airway inflammation in mice, and intranasal transfer of HpbE-conditioned macrophages led to reduced airway eosinophilia in a COX/PGE2-dependent fashion. The induction of regulatory mediators in macrophages depended on p38 mitogen-activated protein kinase (MAPK), hypoxia-inducible factor-1α (HIF-1α), and Hpb glutamate dehydrogenase (GDH), which we identify as a major immunoregulatory protein in HpbE Hpb GDH activity was required for anti-inflammatory effects of HpbE in macrophages, and local administration of recombinant Hpb GDH to the airways abrogated allergic airway inflammation in mice. Thus, a metabolic enzyme present in helminth larvae can suppress type-2 inflammation by inducing an anti-inflammatory eicosanoid switch, which has important implications for the therapy of allergy and asthma.


Assuntos
Eicosanoides , Helmintos , Animais , Anti-Inflamatórios , Ciclo-Oxigenase 2 , Humanos , Inflamação , Larva , Camundongos
10.
Nat Commun ; 10(1): 4121, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511508

RESUMO

The functionality of most secreted proteins depends on their assembly into a defined quaternary structure. Despite this, it remains unclear how cells discriminate unassembled proteins en route to the native state from misfolded ones that need to be degraded. Here we show how chaperones can regulate and control assembly of heterodimeric proteins, using interleukin 23 (IL-23) as a model. We find that the IL-23 α-subunit remains partially unstructured until assembly with its ß-subunit occurs and identify a major site of incomplete folding. Incomplete folding is recognized by different chaperones along the secretory pathway, realizing reliable assembly control by sequential checkpoints. Structural optimization of the chaperone recognition site allows it to bypass quality control checkpoints and provides a secretion-competent IL-23α subunit, which can still form functional heterodimeric IL-23. Thus, locally-restricted incomplete folding within single-domain proteins can be used to regulate and control their assembly.


Assuntos
Interleucina-23/metabolismo , Chaperonas Moleculares/metabolismo , Animais , Células COS , Chlorocebus aethiops , Cisteína/metabolismo , Retículo Endoplasmático/metabolismo , Meia-Vida , Humanos , Interleucina-23/química , Modelos Biológicos , Dobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...